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Abstract A novel method to control multistability
of nonlinear oscillators by applying dual-frequency
driving is presented. The test model is the Keller–
Miksis equation describing the oscillation of a bub-
ble in a liquid. It is solved by an in-house initial-value
problem solver capable to exploit the high computa-
tional resources of professional graphics cards. Dur-
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ing the simulations, the control parameters are the two
amplitudes of the acoustic driving at fixed, commensu-
rate frequency pairs. The high-resolution bi-parametric
scans in the control parameter plane show that a period-
2 attractor can be continuously transformed into a
period-3 one (and vice versa) by proper selection of
the frequency combination and by proper tuning of
the driving amplitudes. This phenomenon has opened
a newway to drive the system to a desired, pre-selected
attractor directly via a non-feedback control technique
without the need of the annihilation of other attractors.
Moreover, the residence in transient chaotic regimes
can also be avoided. The results are supplemented with
simulations obtained by the boundary-value problem
solver AUTO, which is capable to compute periodic
orbits directly regardless of their stability, and trace
them as a function of a control parameter with the
pseudo-arclength continuation technique.

Keywords Control of multistability · Dual-frequency
driving · Bifurcation structure · GPU programming ·
Keller–Miksis equation · Nonlinear dynamics

1 Introduction

One of the common features of nonlinear systems is
multistability [1]; that is, two or more attractors can
coexist at a fixed parameter combination. Multistabil-
ity appears in almost any field of science; for instance in
biological systems [2,3], hydrodynamics [4], mechan-
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ical engineering [5], chemical reactions [6,7], neuron
dynamics [8], climate dynamics [9] or social systems
[10] to name a few. Multistability is also found in bub-
ble dynamics and acoustic cavitation [11], the topic of
the present study. In applications, a major challenge in
nonlinear dynamics is how to control multistability and
switch between coexisting states representing different
system behaviour.

Themechanism of the emergence of multiple attrac-
tors can be rather different. In conservative systems, for
example, one can obtain an arbitrarily large number of
coexisting attractors by introducing small dissipation
[12] (see also the Kolmogorov–Arnold–Moser (KAM)
theory [13]). The number of attractors is roughly
inversely proportional to the damping factor [14]. The
appearance of homoclinic tangencies or the coupling
of systems with a large number of unstable invariant
manifolds can also lead to a high level of multistabil-
ity. In these cases, even an infinite number of attracting
periodic orbits called Gavrilov–Shilnikov–Newhouse
sinks can coexist [15,16]. Another important mecha-
nism leading to multistability is the coupling of a large
number of identical systems, where the number of the
attractors scales with the number of oscillators [17].
This results in a so-called attractor crowding thatmakes
the system extremely sensitive to external noise lead-
ing to randomhopping betweenmany coexisting states.
Several other mechanisms such as delayed feedback
[18], parametric forcing [19] or external noise [20] can
also induce multistability.

The importance of the control of multistability can
be explained with the fact that different stable states
represent different systemperformances.Agood exam-
ple is the large subject of chaos control [21–25], where
the main aim is to eliminate unpredictable behaviour.
Furthermore, there are various fields where the con-
trol of multistability is of paramount importance: laser
technology [26], optical communication [27], cardiol-
ogy [28], genetics [29] or ecology [30]. If multistability
is undesired, then basically two approaches are possi-
ble: make the system monostable or preselect and sta-
bilize an attractor against external noise. In case of a
desirable multistability, where the control between dif-
ferent states (operations) on demand is important, the
task is to properly select an attractor the system should
approach and/or exclude certain undesired attractors
from the dynamics. In these cases, the stabilization
against external noise can also be crucial.

There are three main control strategies known in the
literature, namely non-feedback, feedback and stochas-
tic control [1]. Each has its own advantages and disad-
vantages. The non-feedback techniques are simple and
easy to use, where the main aim is to kick the system
to another stable state [31] or annihilate attractors by
periodic perturbation (modulation) of a parameter or
a state variable [32]. Unfortunately, it cannot be guar-
anteed that the system settles down onto the desired
attractor. The kick introduces randomness to the con-
trol, and extremely long transients are also possible
in the presence of transient chaos. In case of periodic
modulation, there is no direct control overwhich attrac-
tors are annihilated, since usually the attractor with the
smallest basin is destructed first. With increasing per-
turbation magnitude, the annihilation process contin-
ues with attractors having successively the next smaller
basin. Applying a feedback control strategy, the desired
attractor can be targeted directly; moreover, it is a reli-
able technique to control attractors against external
noise. However, details are necessary about the state
space [33] or even the solution of the attractor itself
[34] or its Jacobian. This makes the feedback control
technique unusable in certain problems. For instance, in
an acoustically trapped bubble, it is hard to obtain state
space information about the oscillating bubble and feed
this information back to the resonator. The third kind
of control (stochastic) also performs attractor annihila-
tion, this time with the addition of external noise [35].
The drawback is similar as in case of the non-feedback
technique: the attractors are destructed in the order of
the size of their basin of attraction [1]. That is, the direct
control is again lost. Attractors with very small basins
are usually buried by the noise immediately, without
the need of increasing the magnitude of the noise to
some higher level.

Themain aimof thepresent study is to propose apos-
sible non-feedback control technique capable of driv-
ing a sinusoidally excited system to a pre-selected peri-
odic attractor directly. It is based on the observation that
a period-2 and a period-3 attractor can be continuously
transformed into each other by adding a second, sinu-
soidal component to the excitation. The proper tuning
of the excitation amplitudes is necessary; moreover,
the fixed commensurate frequency combination must
be adjusted according to the periods of the attractors
being transformed. The advantages and disadvantages
over other, already existing control techniques, the lim-
itations and possible extensions to transformation of
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a period-n to a period-m attractor in general, and the
application to other nonlinear oscillators are also dis-
cussed.

The test model is the Keller–Miksis equation well
known in the bubble dynamics community. It is a
second-order nonlinear ordinary differential equation
describing the oscillation of a bubble in a liquid [11].
The parameter space of the present study is relatively
large due to the dual-frequency driving (amplitudes
and frequencies). The approach to obtain a global
picture about the bifurcation structure in the four-
dimensional driving parameter space within reason-
able time is to exploit the high arithmetic processing
power of professional graphics cards (GPUs) using an
in-house initial-value problem (IVP) solver written in
C++/CUDA C. The parameter scans are supplemented
with results obtained by the boundary-value problem
solver AUTO [36], which is suitable to compute peri-
odic orbits directly regardless of their stability, and fol-
low their paths with the pseudo-arclength continuation
technique.

2 Mathematical model

The test model studied (Keller–Miksis equation [11])
describing the evolution of the bubble radius reads(
1 − Ṙ

cL

)
R R̈ +

(
1 − Ṙ

3cL

)
3

2
Ṙ2

=
(
1 + Ṙ

cL
+ R

cL

d

dt

)
(pL − p∞(t))

ρL
, (1)

where R(t) is the time dependent bubble radius; cL =
1497.3m/s andρL = 997.1 kg/m3 are the sound speed
and density of the liquid domain, respectively. Accord-
ing to the general, dual-frequency treatment, the pres-
sure far away from the bubble

p∞(t) = P∞ + PA1 sin(ω1t) + PA2 sin(ω2t + θ) (2)

consists of a static component, P∞, and periodic com-
ponentswith pressure amplitudes PA1 and PA2, angular
frequencies ω1 and ω2, and with a phase shift θ . The
connection between the pressures inside and outside
the bubble at its interface can be written as

pG + pV = pL + 2σ

R
+ 4μL

Ṙ

R
, (3)

where the total pressure inside the bubble is the sum of
the partial pressures of the non-condensable gas, pG,

and the vapour, pV = 3166.8 Pa. pL denotes the pres-
sure in the liquid at the bubble-liquid interface. The
surface tension is σ = 0.072N/m, and the liquid kine-
matic viscosity is μL = 8.902−4 Pa s. The gas inside
the bubble obeys a simple polytropic relationship

pG =
(

P∞ − pV + 2σ

RE

)(
RE

R

)3γ

, (4)

where the polytropic exponent is γ = 1.4 (adiabatic
behaviour), the equilibrium bubble radius is RE =
10μm and the static pressure is P∞ = 1 bar.

For numerical purposes, system (1)–(4) is rewritten
into a dimensionless form by introducing the dimen-
sionless variables

τ = ω1

2π
t, (5)

y1 = R

RE
, (6)

y2 = Ṙ
2π

REω1
, (7)

and the equations are rearranged to minimize the num-
ber of coefficients. The final form of the numerical
model is

ẏ1 = y2, (8)

ẏ2 = NKM

DKM
, (9)

where the numerator, NKM, and the denominator, DKM,
are

NKM = (C0 + C1y2)

(
1

y1

)C10
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−C3
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y2
y1

−
(
1 − C9

y2
3

) 3

2
y22

− (C5 sin(2πτ) + C6 sin(2πC11τ + C12))

(1 + C9y2) − y1 (C7 cos(2πτ)

+ C8 cos(2πC11τ + C12)) , (10)

and

DKM = y1 − C9y1y2 + C4C9. (11)

The coefficients are summarized as follows:

C0 = 1

ρL

(
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RE

) (
2π

REω1

)2

, (12)
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C10 = 3γ, (22)

C11 = ω2

ω1
, (23)

C12 = θ. (24)

The angular frequencies ω1 and ω2 are normalized
by the linear, undamped angular eigenfrequency [37]

ω0 =
√
3γ (P∞ − pV)

ρLR2
E

− 2(3γ − 1)σ

ρLR3
E

(25)

of the unexcited system that defines the relative fre-
quencies as

ωR1 = ω1

ω0
, (26)

ωR2 = ω2

ω0
. (27)

With RE = 10µm and with the other constants in (25)
given before in this section, the eigenfrequency is f0 =
ω0/2π = 340 kHz.

3 Numerical implementation and parameter
choice

The simplest technique to solve the system (8)–(9) is to
take an initial-value problem solver, integrate the equa-

tions forward in time and, after the convergence of the
transient trajectory, record and save the important prop-
erties of the solutions found. Thereby, our main inter-
est is in periodic solutions and their organization in the
reduced driving parameter space discussed below. The
first part (2048 T ) of the integration is regarded as ini-
tial transient and dropped followed by integration of
the system further by 8192 T for the proper conver-
gence of average quantities like Lyapunov exponent or
winding number, where T is the period of the dual-
frequency excitation function. The scheme employed
is the explicit and adaptive Runge–Kutta–Cash–Karp
method with embedded error estimation of orders 4
and 5 (the algorithm is adapted from [38]). The quan-
tities stored are the points of the (global) Poincaré sec-
tion (see the choice in Sect. 4 below), which are stan-
dard ingredients for bifurcation diagrams; furthermore,
the maximum bubble radius and the maximum absolute
value of the bubble wall velocity, which are important
for applications; finally, the period, the Lyapunov expo-
nent and the winding number of the attractors found,
quantities that are essential for a detailed analysis of
bifurcation structures.

A strategy to represent the results of parametric stud-
ies involving high-dimensional parameter spaces con-
sists in creating high-resolution bi-parametric plots,
a rapidly spreading technique in the investigation of
nonlinear systems with a high-dimensional parame-
ter space [39–49]. The system studied here, a bub-
ble in water with dual-frequency acoustic excita-
tion, has a four-dimensional driving parameter space
(PA1, PA2, ωR1, ωR2). For simplicity, the phase shift is
set to θ = 0. It is restricted in the present study by the
requirement that the relative-frequency pairs obtained
fromωR1 andωR2 are rational. Thepressure amplitudes
PA1 and PA2 are taken as themain control parameters at
fixed relative-frequency pairs. The range of each pres-
sure amplitude is 0–5bar, investigated at first with a
resolution of 501 steps for an overview. The relative-
frequency values ωR1 and ωR2 are chosen from the
following set:

1

10
,
1

5
,
1

3
,
1

2
,
1

1
,
2

1
,
3

1
,
5

1
,
10

1
. (28)

Exploiting symmetries in the driving parameter space,
this gives

∑8
i=1 i = 36 combinations of two fre-

quencies. Observe that two orders of magnitude dif-
ference in the frequency range are covered and that,
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for instance, ωR1 = 1/5 and ωR2 = 1/1 means that
in an experiment, the bubble is driven by 0.2ω0 and
by the resonance frequency ω0. Computations are per-
formed at every possible frequency combination of the
above set, which means altogether 36 two-dimensional
plots for every quantity to be studied (period, Lya-
punov exponent, etc). Moreover, owing to the fine
details in the diagrams, high-resolution surveys are
necessary. In order to reveal possible coexisting attrac-
tors, 10 randomized initial conditions are used at each
parameter set. Indeed, the 10 different trajectories can
converge to different attractors with distinct proper-
ties (e.g. period). Altogether, a single plot contains
501 × 501 × 10 ≈ 2.5million initial-value prob-
lems.

Even a single bi-parametric plot requires large com-
putational capacities; thus, the high processing power
of professional videocards (GPGPUs) is exploited.
During the parameter studies, millions of simple
(only second order) and independent ordinary dif-
ferential equations are to be solved. Moreover, the
algorithm employed needs only function evaluations.
Therefore, our problem is well suited for paralleliza-
tion on GPUs. The program code is written in a
C++ and CUDA C software environment. The avail-
able GPUs are a Titan Black card (Kepler archi-
tecture, 1707 GFLOPS double-precision processing
power), twoTeslaK20 cards (Kepler architecture, 1175
GFLOPS) and eight Tesla M2050 cards (Fermi archi-
tecture, 515 GFLOPS). The application of double-
precision floating-point arithmetic ismandatory in bub-
ble dynamics due to the possibly large-amplitude,
collapse-like response of the system [11]. The final,
optimized code is approximately about 50 times faster
on the Titan Black, about 30 times faster on the Tesla
M2050 and about 120 times faster on the Tesla K20
than on a four-core Intel Core i7-4790 CPU. Sur-
prisingly, the professional Tesla K20 card was more
than two times faster than the gamer Titan Black card
even though the theoretical peak processing power is
higher for the Titan Black GPU. A thorough perfor-
mance analysis between GPUs and CPUs solving large
numbers of ordinary differential equations is beyond
the scope of the present study. The interested reader
is referred to the publications [38,50–52] for more
details.
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Fig. 1 Example for graphs of a dual-frequency excitation (red)
and its two harmonic components as mainly used in the study
(ωR1 = 3, black; ωR2 = 2, blue) with pressure amplitudes
PA1 = PA2 = 1 bar. The vertical lines marked by T1 (black
solid), T2 (blue solid) and T (red dashed) designate the periods
of the high-frequency component, the low-frequency component
and the dual-frequency driving, respectively. T = 3 × T1 =
2 × T2 = 3. (Color figure online)

4 Global Poincaré section and the period-reducing
phenomenon

The parameters investigated in the present study are
the pressure amplitudes (PA1, PA2) and the relative fre-
quencies (ωR1, ωR2) of the dual-frequency excitation
with phase shift θ = 0, i.e. C12 = 0. The main con-
trol parameters are the pressure amplitudes at several
fixed frequency combinations. The ratio of each fre-
quency pair is rational; therefore, periodicity of the
dual-frequency driving is guaranteed (quasiperiodic
forcing is excluded).

As an example, a dual-frequency excitation is pre-
sented in Fig. 1 as a function of time together with its
two periodic components atωR1 = 3 andωR2 = 2. For
definiteness, the pressure amplitudes are set to PA1 =
PA2 = 1 bar. The black and blue curves are the high-
and low-frequency components, respectively. Since the
dimensionless time τ is definedbymeansof thefirst fre-
quency component, see Eq. (5), the normalized period
corresponding to the relative frequency ωR1 is T1 = 1,
indicated by the vertical black line in Fig. 1. The nor-
malized period of the second component (relative fre-
quencyωR2) can be calculatedwith the frequency ratio;
that is, T2 = 1/C11 = ωR1/ωR2 = 3/2 = 1.5 (blue
vertical line). Compare these periods with the argu-
ments of the harmonic functions in equation (10) and
keep inmind that the phase shift is zero (θ = C12 = 0).
As only normalized periodswill be used throughout the
article, this very often occurring quantitywill be simply
called “period”.
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The sum of the two harmonic components results
in a still periodic, but non-harmonic forcing function
presented by the red curve in Fig. 1. The period of this
function is T = 3T1 = 2T2 = 3, which is used as a
global Poincaré section for the system (8)–(9). Con-
sequently, during the numerical integration of the sys-
tem with an initial-value problem solver, the continu-
ous trajectories are sampled at time instants τn = n · T
(n = 0, 1, 2, . . .). Accordingly, the period, TN , of a
periodic orbit is defined as TN = N · T, N ∈ IN, and
the solution is called period-N orbit. Observe, however,
that in the special cases of PA1 = 0 bar or PA2 = 0 bar,
the period T , which defines the global Poincaré section,
does not coincide with the period of the actual driving
T2 or T1. For PA1 = 0 bar, the dual-frequency forc-
ing becomes a purely harmonic function shown by the
blue curve in Fig. 1, and the continuous trajectories
are sampled only after every second period of excita-
tion, 2T2. Therefore, an originally period-2k solution
is observed only as a period-k orbit. Similarly, when
PA2 = 0 bar, the trajectories are sampled only after
every third period of the excitation, 3T1 (compare the
black and red vertical lines in Fig. 1), and the period
of an originally period-3k orbit is reduced from 3k to
k. This period-reducing phenomenon, occurring when
one of the two components of the forcing function is
vanishing and only a purely harmonic excitation is left,
plays an important role in the bifurcation structure of
the system, discussed in more detail in Sect. 5; further-
more, period reduction necessarily takes place for other
frequency pairs as long as the ratio of a pair is rational.

5 Results from a global scan

Throughout the following subsections, the fundamental
mechanism capable of controllingmultistability in har-
monically driven nonlinear oscillators is presented. The
basis is the period-reducing phenomenon discussed
above, by which the dual-frequency treatment can gen-
erate “bridges” between different periodic attractors.
First, a global picture is shown via a series of high-
resolution bi-parametric plots of Lyapunov-exponent
and periodicity diagrams at different frequency com-
binations (the control parameters are the excitation
amplitudes).Next, the details are demonstrated through
a specific example with frequencies ωR1 = 3 and
ωR2 = 2 (see again Fig. 1 for the driving signals).
It must be emphasized that the amplitudes for both fre-
quencies of the driving can be arbitrary; that is, there

is no restriction to small-amplitude perturbations cor-
responding to the second sinusoidal component.

5.1 The branching phenomenon

Out of the data sets for the 36 relative-frequency com-
binations, four diagram pairs are shown in Fig. 2 at the
four different relative-frequency pairs (ωR1, ωR2) =
(0.2, 0.1), (1, 0.1), (3, 1) and (3, 2) organized in rows
and for two different quantities (Lyapunov exponent
and period) organized in columns. The left column
contains the Lyapunov-exponent diagrams, where the
colour-coded area means chaotic solutions (positive
exponent) and where in the greyscale domains there
are periodic attractors (negative exponent). In the right
column, the periods of the (converged) solutions are
presented up to period-6. Periodic solutions higher than
six including chaos can be found in the black domains.
In the upper two rows, the plots correspond to relative
frequencies lower than or equal to the linear resonance
frequency (ωR1,2 ≤ 1), while the lower two rows have
relative frequencies higher than or equal to the linear
resonance frequency (ωR1,2 ≥ 1).

Sincedetailed investigations of dual-frequencydriven
systems for arbitrary driving amplitudes with ratio-
nal frequency ratio are absent in the literature, only
very few information exists about the bifurcation struc-
ture shown in Fig. 2. It can be clearly seen that the
dual-frequency driving causes a very complex interplay
between the resonances originating from the single-
frequency driven system (horizontal and vertical axes
in Fig. 2), see especially the first two rows of the figure.
Their comprehensive topological analysis is beyond the
scope of the present study; instead, it intends to add
some pieces to our knowledge by looking for special
features in the diagrams. In particular, we focus on a
very specific phenomenon, the branching mechanism,
turning out to be a special feature of dual-frequency
driven nonlinear oscillators with rational frequency
combinations, which can be used for the control ofmul-
tistability.

Observe that on the horizontal axis in the third row
and second column of Fig. 2, three period-3 branches
emerge from the segment marked by P3B3 (period: 3,
number of the branches: 3). Similarly, three branches
appear from the segments P4B3 and P3B3 on the hor-
izontal axis, and two branches are merged together at
segments P2B2 and P3B2 on the vertical axis in the
last row and second column of Fig. 2, better to be seen
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Fig. 2 List of
high-resolution
bi-parametric plots as a
function of the pressure
amplitudes at different
relative-frequency pairs
organized in rows. Left
column: Lyapunov-
exponent diagrams
separating the chaotic and
periodic solutions. Right
column: Periodicity
diagrams, where periodic
solutions are plotted with
different colours up to
period-6. Period-7 or higher
solutions (including chaos)
can be found in the black
regions. The pressure
amplitudes PA1 and PA2 are
given in bar

in the enlargement and extension in Fig. 3. Observe
also that the number of the branches is exactly the
same as the value of the corresponding relative fre-
quency along the respective axis. This phenomenon
will be referred to as branching mechanism through-
out the paper and will be investigated in more detail for
the case ωR1 = 3, ωR2 = 2.

In order to get a deeper insight into the branch-
ing mechanism at the relative-frequency pair ωR1 =
3, ωR2 = 2, computations were repeated with much
higher resolution of the pressure amplitudes (Fig. 3).
The ranges of the control parameters are PA1 ∈
[0, 8] (bar) and PA2 ∈ [0, 5] (bar) with resolutions
4001 and 2501, respectively. The number of initial
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Fig. 3 Bi-parametric periodicity diagram at the relative-
frequency pair ωR1 = 3, ωR2 = 2 with increased resolution
(4001×2501) of the control parameters PA1 and PA2. The num-
ber of the initial conditions is 5×5 = 25defined on an equidistant

grid in the y1–y2 phase plane. The colour code is the same as in
the right column of Fig. 2. The pressure amplitudes PA1 and PA2
are given in bar. (Color figure online)

conditions at a control parameter pair (PA1, PA2) is
increased from 10 to 5×5 = 25 defined on an equidis-
tant grid on the y1–y2 phase plane. Thus, 2501×4001×
25 ≈ 250million initial-value problems have to be
solved. This huge amount of computations is divided
into 5 × 8 = 40 (ΔPA1,2 = 1 bar) segments and dis-
tributed to different GPUs.

At first sight, Fig. 3 contains only slightly more
information about the branching mechanism than the
bottom right diagram in Fig. 2, since it is hard to rep-
resent the many coexisting attractors in a single plot
obtained by the increased number of initial conditions
(in case of coexistence, the solution with the high-
est period is plotted). Investigating the system period-
by-period, however, this high-resolution bi-parametric
scan becomes very helpful to understand the branching
mechanism (explored rigorously in the next sections);
in particular, to identify the connected branches with
different periods confidently, such as the ones originat-
ing from P4B3, P3B3, P2B3, P3B2 or P2B2, where,
for instance, P2B3 and P2B2 are connected.

Typical colour combinations can be seen at the bor-
der of the branch families. The three green P2 bands are

bordered each by a yellow (period-4) band at the right
border (a period-doubled zone) followed by a thin black
line (indicating period-8 and higher periods including
chaos that are encoded that way). Similarly, the three
dark blue P3 bands are bordered each by a light blue
(period-6) band, again indicating the start of a period-
doubling sequence. In addition, the three yellow P4
bands are bordered by a thin black line, presumably
also the beginning of a period-doubling sequence to be
seen only at higher resolution. Note that also other dark
blue areas are bordered on one side by a period-doubled
zone of light blue followed by black. Thus, the branches
themselves are period-doubling objects. It should also
be noted that in any case, two of the three branches in
each PnB3, n = 2, 3, 4, turn to the left (lower driving
amplitudes PA1) and one to the right (higher driving
amplitudes PA1).

5.2 Coexisting period-1 solutions

Although the red period-1 domain in Fig. 3 shows no
sign of multiple branches, the examination of its inner
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structure—the organization of the coexisting period-
1 orbits—reveals important features of the branching
mechanism. They turn out to be general for other peri-
ods as well. By filtering the results for period-1 orbits
and by counting the number of the different attractors
at a given control parameter pair, the structure of the
coexisting period-1 solutions can be made visible in
the PA1–PA2 plane, see Fig. 4 with a magnification of
the zone near the origin in the bottom panel. Domains
with different colours represent areas with a differ-
ent number of coexisting attractors up to four. These
domains are bounded by saddle-node (SN, solid) and
period-doubling (PD, dashed) curves computed by the
boundary-value problem solver AUTO introduced in
more detail later. The boundaries computed by AUTO
are continuous curves. Some fractal-like shapes in the
colour-coded domains are an artefact of the lack of a
sufficient number of initial conditions or the presence
of extremely long transients during the initial-value-
problem computation Crossing one of the boundaries
means the increment or decrement of the number of the
attractors by one.

Multiple stable period-1 orbits in a bi-parametric
space usually originate via cusp bifurcations forming
pairs of SN points (hysteresis) and giving rise to hys-
teresis zones. The overlapping of such hysteresis zones
may produce domains with a high number of coexist-
ing period-1 attractors [53]. The sole cusp bifurcation
in the bottom panel of Fig. 4, however, cannot explain
the mosaic-type pattern of the period-1 structure. The
investigation of the two special cases, where one of the
amplitudes of the dual-frequency driving PA1 or PA2

is zero (vertical or horizontal axis in Fig. 4), can help
to understand this pattern.

5.3 The limiting case PA1 = 0 and the
period-reducing phenomenon

The bifurcation structure with PA1 = 0 bar is shown in
Fig. 5, where the first component of the Poincaré sec-
tion Π(y1) is plotted as a function of PA2. The colour
code is the same as in the cases of Fig. 3 and the right
column of Fig. 2. For instance, red, green and blue
curves are period-1, -2 and -3 orbits, respectively. Some
of the periodic orbits are alsomarked by N ×PX, where
N is the number of the coexisting attractors of period X .
The pitchfork, saddle-node and period-doubling bifur-

Fig. 4 Number of coexisting period-1 orbits in the PA1–PA2
parameter plane at the relative-frequency pair ωR1 = 3, ωR2 =
2. The saddle-node (SN, solid) and period-doubling (PD, dashed)
curves, computed by the boundary-value problem solver AUTO,
are the boundaries of the domains with a different number of
coexisting attractors. The pressure amplitudes PA1 and PA2 are
given in bar

cation points are indicated by PF, SN and PD, respec-
tively.

Theperiod-reducingphenomenondiscussed indetail
in Sect. 4 plays an important role in the period-1 bifur-
cation structure. Observe that the applied frequency
combination is the same as in Fig. 1; furthermore,
the first component of the dual-frequency driving is
zero. Consequently, the driving is a purely harmonic
function proportional to the blue curve in Fig. 1, and
an originally period-2k solution is observed only as
period-k orbit. Thus, the first bifurcation of the sta-
ble period-1 curve originating from the equilibrium
solution y1E (both amplitudes are zero) is a pitchfork
point PF, instead of a period-doubling pointPD, which
gives birth of two period-1 branches 2 × P1. Only the
subsequent bifurcations exhibit a Feigenbaum cascade
(2 × P2 → 2 × P4 → · · · ). Similarly, the first bifur-
cation point in a cascade must be a symmetry-breaking
bifurcation in case of a symmetric orbit in a symmetric
nonlinear oscillator [54].
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Fig. 5 One-dimensional bifurcation structure with PA1 = 0 at
the relative-frequency pair ωR1 = 3, ωR2 = 2, where the first
component of the Poincaré sectionΠ(y1) is plotted as a function
of the control parameter PA2. The colour code is the same as in
the cases of Fig. 3 and the right column of Fig. 2. The relevant

periodic orbits are marked by N ×PX, where N is the number of
the coexisting attractors of period X . The pitchfork, saddle-node
and period-doubling bifurcation points are marked by PF, SN
and PD, respectively
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Fig. 6 The period-reducing phenomenon. Top panel: Bubble
radius versus time curves y1(τ ) (pressure amplitude PA1 = 0 bar
PA2 = 1 bar) starting at the black dots at τ = 0 marked by
the bold numbers 1 and 2 in Fig. 5. Bottom panel: The sig-
nal of the single-frequency driving with period τ = T2. The
global Poincaré section applied during the present computations
is defined by T (dashed, red vertical line). (Color figure online)

Two examples of bubble radius versus time curves
y1(τ ) are plotted in the top panel of Fig. 6 so as to
help understanding the period-reducing mechanism.
The blue and black period-1 solutions are initiated
at PA2 = 1 bar from the black dots marked by the
bold numbers 1 and 2 in Fig. 5, respectively. The blue
harmonic function in the bottom panel in Fig. 6 is
the purely harmonic driving of the system, see also
Fig. 1. It is clear that if the Poincaré sections are
taken at time instances τn = n · T (n = 0, 1, 2, . . .),
which is used during the present simulations, the solu-
tions are regarded as period-1 orbits. In contrast, if the
Poincaré sections are taken at time instances τn = n ·T2
(n = 0, 1, 2, . . .), which is a common choice in case of
a purely harmonic driving, the solutions are period-2
orbits. Toprevent ambiguity in the definitionof the peri-
odicities, solutions will be referred to as “originally”
period-N orbits if the latter definition of the Poincaré
section is applied. Although the blue and black attrac-
tors in Fig. 6 are different (each has its own basin of
attraction), the only difference between them is a phase
shift in time by one period of the driving (Δτ = 1.5).

Altogether two types of bifurcation scenarios of
periodic orbits are observable in Fig. 5. For odd basic
periods (period before a bifurcation cascade takes
place), the first point is a pitchfork bifurcation followed
by a Feigenbaum period-doubling cascade (PF →
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Fig. 7 Period-1 bifurcation curves computed by the boundary-
value problem solver AUTO. The black and red curves are stable
and unstable solutions, respectively. The asterisk, crosses and
dots are the pitchfork (PF), period-doubling (PD) and saddle-

node (SN) bifurcation points, respectively. The left panel (A)
shows the case with PA1 = 0, while the right panel (B)
presents results at pressure amplitude PA1 = 0.3 bar and at
PA1 = 0.6 bar. (Color figure online)

PD → PD → · · · ). Some examples are the already
investigated period-1 curve P1 starting from y1E , the
period-3 orbits P3 originating from a SN point at
PA2 = 1.5 bar or the period-5 branches P5 appearing
again via a SN point at PA2 = 2 bar. Observe that the
PF points have no influence to the colour, i.e. period.
In case of even basic periods, the period is immedi-
ately halved (period-reducing phenomenon), and the
bifurcation scenario is a classic Feigenbaum cascade
without an initial PF point (PD → PD → · · · ). An
example here is the originally period-6 solution 2× P3
generated at PA2 = 2.5 bar.

Through the discussion of Figs. 5 and 6, it has been
shown that the definition of the Poincaré section has an
important influence on the apparent periodicity of the
solutions. However, problems only appear in the two
limiting cases of either PA1 = 0 bar or PA2 = 0 bar. In
the first special case of PA1 = 0 bar, a suitable choice
can be either T2 or T , see the bottom panel of Fig. 6.
Since the addition of any small value to the first pres-
sure amplitude PA1 will destroy the special structure
introduced in Fig. 5, T2 will be no longer a period of
the dual-frequency driving but only T . Therefore, in
order to keep the definition unified, the usage of T as
a global Poincaré section is advantageous. This, at first
sight only technical, extension of the definition to the
limiting, purely harmonic-driving case is of great help
in ordering and explaining the bifurcation scenarios of
dual-frequency driven systems.

In order to illustrate this effect, it is useful to solve
and compute complete bifurcation curves of periodic
orbits with a boundary-value-problem solver. As an
example, in Fig. 7A, the second component of the
Poincaré section Π(y2) of the period-1 curves is plot-
ted as a function of the control parameter PA2 com-
puted by the bifurcation analysis and continuation soft-
ware AUTO [36]. Here, the first component of the
pressure amplitude PA1 is still zero. AUTO is capable
of tracking down whole bifurcation curves including
the unstable part even if they contain multiple turn-
ing points, and it can detect the bifurcations and their
types. This is the reason why AUTO is commonly used
to study the bifurcation structure of nonlinear systems
[5,53,55–61]. In Fig. 7, the stable and unstable parts of
the period-1 branches are indicated by the black and
red curves, respectively. The curve originating from
y2E becomes unstable via a pitchfork bifurcation PF
at PA2 = 0.19 bar producing two stable coexisting
period-1 branches. These stable curves lose their stabil-
ity approximately at PA2 = 3 bar by a period-doubling
point PD.

5.4 Perturbation of the limiting case PA1 = 0

Thebreakupof the structurally unstable pitchforkbifur-
cation due to the effect of a nonzero value of the ampli-
tude of the first harmonic component of the excitation
(PA1 = 0.3 bar) is clearly seen in Fig. 7B. The curves
marked by P1E

1 and P112 in Fig. 7A form a single curve
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Fig. 8 One-dimensional bifurcation structure with PA2 = 0 at
the relative-frequency pair ωR1 = 3, ωR2 = 2, where the first
component of the Poincaré sectionΠ(y1) is plotted as a function
of the control parameter PA1. The colour code is the same as in
the cases of Fig. 3 and the right column of Fig. 2. The relevant

periodic orbits are marked by N × PX, where N is the number
of the coexisting attractors of period X . The saddle-node and
period-doubling bifurcation points are marked by SN and PD,
respectively. (Color figure online)

P1E
1 + P112 in Fig. 7B. Likewise, the curves P1E,u

1 and
P122 presented in Fig. 7A form again a single curve

P1E,u
1 + P122 in Fig. 7B composed by a stable and an

unstable part separated by a saddle-node bifurcation
(black dot) at the turning point. Elevating PA1 from
0.3 bar to 0.6 bar, a pair of SN points appears along the
branch P1E

1 + P112 forming a hysteresis. Observe that

both curves P1E
1 + P112 and P1E,u

1 + P122 have their
own separate evolution as the amplitude PA1 changes;
consequently, the black and blue curves in the top of
Fig. 6 must become different (not only by a phase shift
in time) for PA1 > 0 bar as they have their own sepa-
rate evolution aswell. All the pitchfork structures in the
bifurcation scenarios initiated from odd basic periods
are broken up in the same way as presented in Fig. 7B,
except for the formation of the hysteresis which not
necessarily happens.

5.5 The limiting case PA2 = 0

Shortly in this section, the complex development of
the period-1 structure in a wide range of the amplitudes
PA1 and PA2 will be discussed in detail. Up to now, it is
important only to understand how the period-reducing
mechanism works for single-frequency driving, how it
decomposes periodic solutions into multiple orbits of

lower periodicities, and how these multiple orbits are
separated under the perturbation of the amplitude of the
other harmonic component. In order to understand the
global picture, however, the investigation of the other
special case, where the control parameter is PA1 and
the amplitude of the second component PA2 is zero,
is necessary. The corresponding bifurcation diagram
is shown in Fig. 8, where the first component of the
Poincaré section Π(y1) is plotted as a function of the
pressure amplitude PA1. The colour code and the nota-
tion system are the same as in Fig. 5. At first sight—in
view of (2) with θ = 0—both cases (PA1 = 0 and
PA1 = 0) seem exchangeable. However, switching to
the other frequency component, different bifurcation
scenarios develop (if the frequencies are distinct).

There are two types of bifurcation scenarios of peri-
odic orbits. If the basic (original) period is divisible
by 3, then the period reducing takes place immediately
decreasing the period of the orbits from3k to k followed
by a Feigenbaumcascade as usual (PD → PD → · · · ).
Notable examples are the branches 3× P1 and 3× P3
both appearing via SN bifurcations at PA1 = 1.2 bar
and at PA1 = 4.1 bar, respectively. For other basic
periods, there is no period-reducing phenomenon, but
only a period-doubling cascade. Examples of this sce-
nario are the period-1 curve departing from the equi-
librium solution y1E , the period-4 orbits generated at
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Fig. 9 The period-reducing phenomenon. Dimensionless bub-
ble radius versus time curves of four coexisting stable period-1
orbits at pressure amplitude PA1 = 2 bar starting from the black
dots shown in Fig. 8 at τ = 0. Between the black, red and blue
solid curves there is only a phase shift in time with Δτ = 1
or 2. The dashed curve is a degenerate (i.e. repeating only after
T1 instead of after T ), small-bubble-radius-amplitude case that
exists stably up to PA1 ≈ 7 bar where the oscillation period
doubles. (Color figure online)

PA1 = 1.5 bar or the period-5 branches initiated at
PA1 = 4.6 bar. Observe that there are no pitchfork or
other special bifurcations present in these cases.

Figure 8 explains how the coexistence is possible of
altogether four period-1 stable solutions highlighted in
Fig. 4 by the yellow domain. The period-1 orbit P1
emerges from the equilibrium point y1E and remains

stable up to the pressure amplitude PA1 ≈ 7 bar. It
loses its stability there via a period-doubling bifur-
cation. The originally period-3 family of solutions
3× P1 appearing through a SN point is decoupled into
three period-1 branches existing between the ampli-
tudes PA1 ≈ 1.19 bar and PA1 ≈ 4.67 bar. Therefore,
there is a wide range of amplitudes PA1 where four
period-1 attractors exist. Figure 9 shows these coexist-
ing orbits at PA1 = 2 bar starting from the black dots
in Fig. 8. The dashed curve is the period-1 orbit related
to the curve originating from y1E . The black, red and
blue solid curves are the orbits of the period-reduced
3 × P1 branches, where the only difference between
them is again a phase shift in time, in this case of one
or two periods T1 (Δτ = 1 or 2).

5.6 Perturbation of the limiting case PA2 = 0

Again, the boundary-value-problem solver AUTO can
help to understand the behaviour of the system under
a small perturbation of the amplitude of the second,
harmonic component of the driving (PA2 > 0). The
bifurcation curves related to the four period-1 orbits
can be seen in Fig. 10A for PA2 = 0 bar. The black
and red curves mean stable and unstable orbits, respec-
tively. The bifurcation of the saddle-node (SN) and
period-doubling (PD) points are also detected. They
are marked by dots (SN) and crosses (PD). Observe
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Fig. 10 Period-1 bifurcation curves computed by the boundary-
value problem solver AUTO. The black and red curves are stable
and unstable solutions, respectively. The crosses and dots are the
period-doubling (PD) and saddle-node (SN) bifurcation points,
respectively. The left panel (A) shows the case with PA2 = 0,

while the right panel (B) presents results of the 3 × P1 curves
at the pressure amplitude of PA2 = 0.1 bar. The arrows in panel
(B) show the motion of the SN bifurcation points, two of them
towards lower PA1, one of them towards larger PA1. (Color figure
online)
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that the PA1-ranges of the stable (black) segments in
Fig. 10A coincide with the domain of existence of the
corresponding parts of the red curves in Fig. 8. On the
right hand side of Fig. 10, only the evolution of the
curves 3 × P1 is presented by increasing the ampli-
tude PA2 from zero to 0.1 bar. It is clear that while the
saddle-node bifurcations (black dots) take place at the
same value of PA1 when PA2 = 0 bar (see the vertical
thin line in Fig. 10B), the locations of these bifurcation
points differ when PA2 > 0. This means that each of
the three bifurcation curves have their own evolution
as the amplitude PA2 changes. Consequently, the black,
red and blue solid curves in Fig. 9 become different (not
only by a phase shift in time) for PA2 > 0.

6 Period 1: the complete picture

Due to the exhaustive discussion in the preceding sec-
tions, it is clear now how the system behaves under
single-frequency driving when a second, harmonic
component is added as a perturbation. The huge amount
of results presented in Fig. 3 can help to establish a
global overview of the evolution of all the period-1
solutions by means of filtering the results by period,
here period-1. Figure 11 shows these period-1 solu-
tions represented in a three-dimensional plot, where the
second component of the Poincaré section, Π(y2), the
bubble wall velocity, is plotted as a function of the two
main control parameters PA1 and PA2. The different
period-1 orbits can be decomposed into several layers
indicated by the blue, black, red and green surfaces.
In the limit cases when one of the pressure amplitudes
is zero (planes Π(y2)–PA1 or Π(y2)–PA2), the points
are plotted with bigger markers to be able to distin-
guish such special solutions more easily. These solu-
tions, which form complete bifurcations curves pre-
sented in Figs. 7A and 10A, are marked by P1m

n , where
n is the original period and m = 1, . . . , n is a serial
number, P1 means period-1 solution. When both PA1

and PA2 are zero then the system is in equilibrium and
the dimensionless bubble wall velocity and its Poincaré
section y2E are zero (it is the origin of the diagram).
Theblackperiod-1 surface originating from this point is
marked by P1E

1 (instead of P111, emphasizing the equi-
librium origin E). There is only one curve of this type,
which is a surface of small-amplitude bubble oscilla-
tions.

Fig. 11 3D representation of the stable period-1 orbits (Poincaré
section points of the bubble wall velocity) above the parameter
plane PA1–PA2 by filtering the results presented in Fig. 3 by
period, here period-1. The period-1 orbits can be separated into
four different layers marked by the blue, black, red and green
surfaces. The indication of the curves in theΠ(y2)–PA1 (Fig. 10)
or Π(y2)–PA2 (Fig. 7) planes is P1m

n , where n is the original
period and m = 1, . . . , n is a serial number, P1 means period-
1 solution. The black surface originating from the equilibrium
solution of the system is marked by P1E

1 (instead of P111 to
show the connection with the equilibrium point). (Color figure
online)

Figure 11 indicates a very interesting phenomenon,
namely the originally period-2 solutions on P112 can
be transformed into the originally period-3 solutions
on P113 through the blue surface. Similarly, orbits on
P122 can be transformed into orbits on P123 via the
green surface. These are smooth transformations by
means of the continuous change of the amplitudes PA1

and PA2 of the dual-frequency driving. Naturally, all
these orbits are considered as period-1 attractors due
to the specific choice of the global Poincaré section.
Consider, however, the following scenario of parame-
ter variations visualized by the supplementary movie
file (Online Resource 1) where the top panel shows the
dimensionless bubble radius curves y1 as a function of
the dimensionless time τ , and the bottom panel repre-
sents the dual-frequency driving signal PA(τ ) (exclud-
ing the static ambient pressure).

Firstly, let us start the investigation with a solu-
tion lying on the bifurcation curve 2 × P1 in Fig. 5
(P112 or P122 in Fig. 11) so that the amplitude of
the single-frequency excitation is somewhere between
PA2 = 1.4 bar and PA2 = 2.9 bar (PA1 = 0 bar) with
relative frequency ωR2 = 2. Specifically, in Online
Resource 1, the pressure amplitude is chosen to be
PA2 = 2.5 bar. In this video, besides the originally
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Fig. 12 A 3D representation of the bifurcation structure, com-
puted byAUTO, of the blue and black layers presented in Fig. 11.
The black and red curves are the stable and unstable solutions,
respectively. The blue and green curves form the skeleton of the

limit cases of PA1 = 0 bar or PA2 = 0 bar. Panel B is an enlarge-
ment of the near-origin zone to better show the bifurcation-point
area. (Color figure online)

period-2 (red) attractor, which is the initial state of the
transformation, an originally period-3 (blue) attractor
coexists regarded as a final target of the control prob-
lem. The colour code of these attractors is the same
both in Fig. 5 and in the top panel of Online Resource
1; in addition, by comparing the top and bottom panels,
the periodicities of the attractors are clearly visible.

Secondly, guide the period-2 orbit smoothly to the
curve 3 × P1 shown in Fig. 8 (either P113 or P123 in
Fig. 11) by varying the pressure amplitudes continu-
ously. By the end of the second operation, the sys-
tem is again driven by a single frequency (ωR1 = 3)
with pressure amplitude between PA1 = 1.2 bar and
PA1 = 4.7 bar (PA2 = 0 bar). In Online Resource 1,
this transformation takes place along a circle in the
PA1–PA2 plane with radius 2.5 bar; that is, the final
value of the first pressure amplitude is PA1 = 2.5 bar.
The continuously changing trajectory during the trans-
formation is marked by the black curve in the top panel.

Thirdly, keep the single-frequencydrivingbut change
both the amplitude PA1 and the relative frequency ωR1

of the driving (in general) to transform the solution
from the red curve 3 × P1 in Fig. 8 to the blue curve
P3 in Fig. 5. This third step is possible, since both the
3× P1 and the P3 curves are related to the same sub-
harmonic resonance of order 1/3, which forms a con-

tinuous domain in the pressure amplitude—frequency
parameter plane [53,61]. Therefore, a smooth transfor-
mation of a period-2 solution into a period-3 orbit of a
single-frequency driven system is possible by a tempo-
rary addition of a second harmonic component to the
driving.This is an efficientway to controlmultistability
in harmonically driven nonlinear oscillators. Accord-
ing to the best of the authors’ knowledge, this phe-
nomenon has not yet been published in the literature.
During this third step in Online Resource 1, the change
of PA1 is not necessary and kept constant. Observe how
the initial and the final parameter set become identi-
cal; that is, single-frequency driving with amplitude
PA1,2 = 2.5 bar at ωR1,2 = 2. The only difference is
the state of the system: operation on the period-3 (blue)
instead on the period-2 (red) attractor.

In order for a better visualization of the surfaces pre-
sented in Fig. 11, hundreds of bifurcation curves are
computed by AUTO departing from the results shown
in Fig. 10A. These surfaces, composed by lines, are
summarized in Figs. 12, 13 and 14. The stable and
unstable parts are the black and red curves, respectively.
As a skeleton, all the bifurcation curves of the limit
cases (PA1 = 0 bar or PA2 = 0 bar) are presented by
the blue (stable) and the green (unstable) curves, which
can help to identify the surfaces more easily (compare
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Fig. 13 A 3D representation of the bifurcation structure, com-
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of PA1 = 0 bar or PA2 = 0 bar. (Color figure online)
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The blue and green curves form the skeleton of the limit cases
of PA1 = 0 bar or PA2 = 0 bar. (Color figure online)

also with Figs. 7A, 10A). As usual, the pitchfork (PF),
saddle-node (SN) and period-doubling (PD) bifurca-
tion points are marked by asterisk, dots and crosses,
respectively. The left hand side of these figures repre-
sents the surfaces in the full parameter domain, while

the right hand side is a magnification of the interesting
parts.

From Fig. 12, it is clear that the blue and black sur-
faces in Fig. 11 are connected for very small values
of PA1. The separation takes place approximately at
PA1 = 0.33 bar via a cusp bifurcation forming a hys-
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Fig. 15 Number of the coexisting period-3 orbits (top panel) and
period-4 orbits (bottom panel) in the PA1–PA2 parameter plane
at relative frequencies ωR1 = 3 and ωR2 = 2

teresis, see also the bottom panel of Fig. 4. An example
for this hysteresis, which exists between the regions of
PA1 > 0.33 bar and PA1 < 1.19 bar, is already intro-
duced in Fig. 7B for PA1 = 0.6 bar. As expected, the
red, standalone surface in Fig. 11 has no connections
with other surfaces, see Fig. 13. The green surface in
Fig. 11 together with its unstable counterpart forms a
simple banded, dual-layer surface presented in Fig. 14.

7 Higher periods

If the smooth transformation works between certain
period-2 and period-3 orbits, there must be other com-
binations of periodic solutions where the transforma-
tion is possible. In order to investigate these other pos-
sibilities, the number of the coexisting period-3 and
period-4 attractors is plotted in the top and the bottom
panels of Fig. 15, respectively. The colour codes are the
same as in case of Fig. 4 (period-1 orbits). Let us focus
only on those parts of the complex bifurcation struc-
tures where the transformations take place. In the top

panel of Fig. 15, there are two branches along which
the following conversion occurs: 2 × P3 = P6 ↔
3 × P3 = P9; that is, an originally period-6 solution
is transformed into an originally period-9 orbit. Simi-
larly, the bottom panel of Fig. 15 shows four bands con-
verting originally period-8 orbits into period-12 orbits
(2 × P4 = P8 ↔ 3 × P4 = P12). As a generaliza-
tion, the present study found that applying the relative-
frequency combination ωR1 = 3 and ωR2 = 2, a trans-
formation between period-2k and period-3k attractors
is possible, here k = 1, 2, . . ..

8 Winding numbers and compatibility of periodic
orbits

Naturally, not every kind of period-2k and period-3k
orbits can be transformed into each other; in other
words, there is a “compatibility” condition. Observe
that the firstPD points of the period-1 branches in Fig. 5
(2 × P1) and in Fig. 8 (3 × P1) are connected via the
period-doubling curve PD shown in the top panel of
Fig. 4. It is well known in the literature that the quan-
tity calledwindingnumberw = nk/mk is invariant and
rational near a period-doubling or a saddle-node point
[62,63]. Here, mk is the period of a given attractor and
nk is the number of the rotations of a nearby trajectory
around the attractor during one period. Therefore, to
each bi-parametric PD or SN bifurcation curve a sin-
gle, rationalwinding number can be associated.When a
transformation between period-2k and period-3k orbits
is possible, then it must be possible between their cor-
responding bifurcation points as well, see, for instance,
the PD curve in Fig. 4 which has the winding number
w = 1/2. Consequently, the transformation is possible
only if the winding numbers of such bifurcation points
are compatible; that is, when they are equal.

9 Discussion

According to the literature, the only option to directly
target an attractor in case of multistability is to apply a
feedback control technique. The main drawback of the
feedback control methods is that explicit knowledge of
the state space (modified targeting method [33], bush-
like paths to a pre-selected attractor [64], reinforcement
learning [65]) or the properties of the targeted attrac-
tor (trajectory selection by a periodic feedback [34]) is
necessary. Control of multistability is possible by delay
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feedback as well, which can be combined with chaos
control easily [66]. In that case, the feedback stabi-
lizes one of the unstable orbits embedded in a chaotic
attractor. Unfortunately, it just stabilizes an unstable
orbit and does not target directly an already existing
attractor. Parenthetically, the feedback control can sta-
bilize an attractor against external noise by employing
the Jacobian of the attractor as a feedback [67]. How-
ever, the state of the system must be already near to
the desired orbit; that is, the application of one of the
above targeting techniques is mandatory.

If feedback control is possible then the aforemen-
tioned controls work very well; otherwise, the appli-
cation of a non-feedback method (including a stochas-
tic one) is inevitable. The main advantage of the non-
feedback control technique presented in this study is
the ability to target the desired attractor directly, which
is not possible with traditional non-feedback controls.
For instance, the attractor selection by short pulses [31]
(kick the system) introduces randomness to the con-
trol; that is, it cannot be guaranteed that the final state
of the system after the kick is the desired attractor.
Moreover, extremely long transients in the presence
of transient chaos [68] are also possible. With the con-
tinuous transformation of attractors such transients can
be avoided. The attractor annihilation techniques by
pseudo-periodic forcing [69] or by harmonic pertur-
bation of a state variably or a parameter [32] cannot
target an attractor directly either. Roughly speaking,
both techniques destruct attractors in the order of the
size of their basin of attraction with increasing forcing
or perturbation amplitudes.

The applicability of the method presented here has
also requirements/limitations. Firstly, in many cases,
there is the requirement that the system should not be
modified appreciably during the control. Therefore, all
non-feedback techniques apply only small perturba-
tions. It is absolutely not fulfilled in the present method
as large deviations from the original system parameters
is usually necessary.However, by the end of the control,
the system goes back exactly to the same parameter set
and additional control is no longer required to sustain
the desired state (attractor). It must be also noted that if
the basin of attraction of the targeted attractor is small
then slow transformation may be necessary.

Secondly, due to the large parameter variation during
the control, detailed knowledge on the topology of the
periodic orbits in a large parameter spacemust be avail-
able. This is usually a minor problem since the bifur-

cation structure of many nonlinear oscillators have the
same basic building blocks [70]. If there is no informa-
tion about a state variable, the orientation in the topol-
ogy can be supported; for instance, by measuring and
Fourier transforming an indirect quantity connected to
the dynamics (in case of bubbles their emitted pres-
sure signal). The peaks presented in the spectra can
provide valuable information about the nature of the
actual attractor [71], see also the studies of Lauterborn
andCramer [72] and Lauterborn and Suchla [73] where
complete period-doubling scenarios could bemeasured
in this way of harmonically forced bubbles represented
via spectral bifurcation diagrams. Another requirement
related to the topology is that the transformed trajecto-
ries must be compatible in terms of winding numbers
as already discussed in Sect. 8.

It must be emphasized that it is possible to combine
the present non-feedback control technique with other
methods. For instance, with stochastic control, attrac-
tors with small basins can be annihilated to “simplify”
the state spaces during the transformation. Moreover,
even if feedback control is possible in an application,
the method introduced here is still a good candidate for
targeting a desired attractor, and after the continuous
transformation, the attractor can be stabilized against
external noise with the feedback control. Similarly,
the delay feedback control can stabilize an unstable
orbit that replaces the originally stable chaotic attrac-
tor. After that, the continuous transformation technique
can be applied between the resulting coexisting stable
states if necessary and if it is possible. In thisway, chaos
control and targeting an attractor directly is accom-
plished simultaneously. There are case studies where
the application of two different kinds of controls may
be successful when the usage of only one of the control
fails [74].

Since the control technique is demonstrated numer-
ically only on a specific system (Keller–Miksis equa-
tion describing bubble dynamics) and on a very spe-
cific example, many questions arise: Is it possible to
“bypass” somehow the winding number compatibility
condition? Is it possible to transform a chaotic attrac-
tor into a stable periodic orbit and vice versa? Is this
method applicable to other systems? In order to answer
these question correctly, additional detailed analyses
are mandatory; however, preliminary conjectures can
be made.

Even if a continuous transformation between two
coexisting attractors does not exist applying a single-
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frequency pair, it may be possible to find a transfor-
mation by using subsequent frequency pairs one after
another, and reaching the desired attractor step-by-step
hopping onto “intermediate” attractors. The transfor-
mation of chaotic attractors into periodic orbits fits into
the large topic of chaos control [21]. Since chaos con-
trol is possible with the addition of a second sinusoidal
component to the driving [24,75], the main issue is that
howchaos is annihilated (a smooth inverse Feigenbaum
cascade or a sudden crises) during the parameter tuning,
and what is the resulting periodic orbit which is inter-
esting from the winding number compatibility point of
view. It is well known that chaos control is possible
merely by adjusting the phase shift between the sinu-
soidal components of the driving [76]; therefore, the
effect of the phase shift must also be thoroughly inves-
tigated. It can also play an important role between the
transformation of the period-2 and period-3 orbits itself
shown in Fig. 11. The period-2 solutions can always be
transformed into one of the period-3 orbits through the
blue or the green surfaces. In contrast, if the period-3
attractor is in a phase in time described by the red sur-
face then transformation is not possible in the opposite
direction (from period-3 to period-2), see again Fig. 11.

It is very likely that the control technique of con-
tinuous transformation is possible for other systems
as well. As it was already mentioned, the topology of
many nonlinear oscillators is composed by the same
building blocks. Moreover, in recent publications, a
phenomenon called replication of periodic domains is
reported by applying a second sinusoidal component to
the driving [40,77], or a single periodic perturbation in
case of maps [78,79]. We believe that the replication of
periodic domains and the branching mechanism intro-
duced in Sect. 5.1 have the same dynamical origin.

Finally, it is worth mentioning that any application
using dual-frequency driving can benefit (at least indi-
rectly) from the results presented in this study due to
the very detailed investigation. Some possible appli-
cations are acoustic cavitation [80–83], Faraday waves
[84], stability of traveling beams [85,86] or laser-driven
dissociation of molecules [87].

10 Conclusion

In the present study, a new non-feedback technique to
control multistability in harmonically driven nonlinear
oscillators is introduced. It is based on the observation

that two attractors which cannot be exchanged by tun-
ing the system parameters may be transformed contin-
uously into each other by temporarily adding a second
sinusoidal component to the driving. The process to
target a desired attractor directly was tested at a rele-
vant example, the Keller–Miksis equation—a second-
order ordinary differential equation describing bubble
dynamics—and visualized via an animation (Online
Resource 1). If this technique is proven to be applicable
to other systems as well, it may become an excellent
candidate to accomplish non-feedback control without
long transients and/or randomness.
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